Write it on your heart that every day is the best day in the year. No man has learned anything rightly, until he know that every day is Doomsday.
Ralph Waldo Emerson (1803-1882).
No matter how positive your outlook, the entrance of the human race into the third millennium can hardly be considered one of dazzling promise and unbridled optimism. As far as perspectives on the coming centuries are concerned, doom and despondency are without doubt the new rock and roll. As the implications of climate change have become ever more frighteningly apparent and a global crusade against terrorism threatens to destabilize an already creaking framework of nations, pundits and prophets have fallen over themselves to inform us that it can't be long before our cosy, comfortable world falls apart... I know, because I have been just as guilty of promulgating gloom and despair as the next eschatologist. In A Guide to the End of the World: Everything You Never Wanted to Know, I considered—in what I hope was a reasonably informed and balanced manner— those global catastrophes that threaten our world and our race: asteroid and comet impacts, volcanic super-eruptions, giant earthquakes, and mega-tsunami, the prospects for a new ice age and the coming hothouse Earth...
I have little doubt that some readers were left running scared or, in the case of one senior citizen who regularly contacts a colleague to check if it's safe to come out yet, barricaded in a basement flat with several hundred tins of corned beef for company. Without question, professional survivalists will have taken on board accounts of the threat posed by global catastrophes, nodded sagely at one another, and gone back to polishing their machine pistols with renewed vigour. This, however, was not the purpose of the book. Rather, its publication in 2002 constituted an awareness-raising exercise designed to drive home the point that our planet is a far more dangerous place to live than most of us appreciate. Its principal lesson taught that the period of relative cosmic, geological, and climatic calm during which modern society had developed and prospered could not last for ever. Throughout the 4.6 billion-year history of the Earth, our planet's crust had been pounded by asteroids and comets, rent by devastating earthquakes and volcanic super-eruptions, drowned by giant waves, and episodically buried beneath kilometre-thick ice sheets. While they were so infrequent that we had yet to see their like, such global geophysical events were not going to stop happening just because we had arrived on the scene. Furthermore, we were making prospects for a comfortable nature far worse through triggering the most rapid period of climate change in recent Earth history.
Three years on, how do things look? Well, not much better, it must be said. The horrifying Indian Ocean tsunami has claimed more than a quarter of a million lives in over thirty countries — local and tourist alike — and provided a shocking and timely reminder that Nature's worst can affect the entire planet or a substantial portion thereof. The events of Boxing Day 2004 have at last focused attention on the potentially enormous scale of future natural catastrophes. So far, however, there is little evidence to suggest that we will be better prepared next time. Furthermore, the events of 11 September 2001, and the nebulous war on terrorism that they spawned, have raised the prospect of endless civil strife in addition to the natural threats our ever more challenged society faces. The capability of our race to wipe itself out has attracted increasing re-examination: less this time with respect to the nuclear holocaust, but more in relation to rather more exotic terminations arising from new avenues in science and technology. Way out in front in the race for champion gloom-monger is former Astronomer Royal. Martin Rees, who—in his book Our Final Century—gives us just a 50:50 chance of surviving the next hundred years. No super-eruptions or asteroid collisions are implicated here, however; the end, according to Rees, is far more likely to be all our own work. Perhaps we will all disappear beneath a sea of grey nano-goo, surrender to the next bout of killer chicken virus, or disappear in a puff of space-time as an over-enthusiastic experimental physicist inadvertently triggers a phase transition in the state of the cosmic vacuum. Or maybe we will succumb to climate change—without question the most disturbing of all potential threats because its effects are already becoming apparent. Despite the protestations of a bunch of illiterati (at least when it comes to climate science) who continue—in the face of crushing evidence to the contrary—to peddle the message that contemporary global warming is a natural phenomenon and nothing to be concerned about, new research and observation has ensured that prospects for the impact of climate change over the next hundred years appear increasingly bleak.
The picture painted, then, continues to be far from a bright one—6 billion or so of us, shoehorned together on an overheating planet that is increasingly riven by pollution, natural catastrophes, man-made disasters, and civil strife. The prophets of doom are still out in force, either proselytizing on the imminence of Nature's revenge or portending the end of our race and our planet by our own hand. But can things really be so bad, and if they are, is there nothing we can do? With 4 million people killed by an estimated 50,000 natural disasters during the twentieth century, it seems we remain unable to cope with the common-or-garden threats of flood, storm, earthquake, and volcanic eruption. What then, could we possibly do if faced with the prospect of an asteroid impact or a volcanic explosion great enough to affect everyone on the planet? Well actually, quite a bit—provided we put our minds to it...
...[T]here are measures we may take to avoid, mitigate, or manage the worst effects of future global catastrophes, but that does not mean that we will necessarilv take them. If the current ineffectiveness of the Kyoto Protocol aimed at reducing greenhouse gas emissions is anything to go by, there is a sufficient absence of political will even to address a catastrophe that is already upon us, let alone one that may lie thousands of years down the line. Furthermore, the chances are that many of the inventions or methodologies put forward as potential solutions to our problems may never be possible, while others carry such enormous risks that their use or implementation can never be sanctioned. Inevitably, science and technology are cast to play leading roles in tackling the worst Nature can throw at us in the future, and herein lies another problem. Gone is the post-World War II optimism, driven by the white heat of science, that saw the advent of nuclear power, man landing on the Moon, and the non-stick frying pan. Now this has been replaced by worries about the environment, the human condition, and the state of the world in which our children and their children will live. Science is no longer viewed by the majority as a cure for all ills; instead it is becoming increasingly regarded—true or not—as the source of many of the problems we face today. On the public's radar screen of science awareness, the conquest of space now barely registers—despite George W's election-year Martian crusade—while nuclear power as an energy miracle has just about dropped off the edge. Instead, shining bright and clear, bang in the screen's centre, are those issues that have the potential to impinge directly upon every inhabitant of the planet: human cloning, genetically modified organisms, climate change, threatening new diseases, and the rapidly expanding field of nanotechnology.
The judicious application of science and technology can help to solve some of the problems we have created for ourselves or that Nature forces us to address, but will a society increasingly mistrustful of scientists and technologists and their work permit this? How can society be persuaded, for example, that industrial-scale pumping of carbon dioxide into the deep ocean, as a means to reduce the concentration of the gas in the atmosphere, is a good and safe thing to do, when industrial technology has contributed in the first place to the bulk of a 30 per cent rise in greenhouse gas (GHG) emissions by releasing the gas into the atmosphere? How can the designers and builders of the world's nuclear arsenals make a convincing case for launching nuclear warheads over our heads and into space in an attempt to divert an asteroid that may or may not have our name on it? There is little doubt that techno-fixes to address future natural global threats will face considerable opposition. In some cases, this is no more and no less than they deserve. Swinging comets past the Earth in order to pull it into an orbit further from the Sun, thereby cooling it down, has recently been proposed by a NASA team. Clearly, such an outlandish scheme is going to struggle to find global acceptance ahead of simply living more sustainable and energy-efficient lives. One would hope that concerns over the see-saw effect—science and technology attempting to correct a problem they were responsible for, but making the situation worse, then trying another tack and making things worse still—are likely to prevent any such proposals being tried. Would you trust NASA scientists to determine correctly the new orbit needed for the Earth's temperature to be ameliorated, bearing in mind that in 1999 they lost a Mars probe because they failed to make a simple conversion from imperial units into metric ones?
Nevertheless, the application of science and technology is critical to reducing the impact of global natural catastrophes in the future. Without their twin benefits we will fail to have any real impact on climate change, nor will we be able to forecast a future volcanic super-eruption, or nudge off course an asteroid that is heading our way. Certainly science and technology together cannot be considered a panacea, nor will they provide a protective shield behind which our race and our planet can sleep soundly forever. In concert, however, they can present us with part of the solution to climate change and supply us with the means to detect potential global catastrophes far enough in advance, either to prevent them happening at all or, at the very least, to allow us some breathing space to prepare for the inevitable and maximize the chances of the fabric of our society surviving relatively unscathed. Crucially, a scientific and technological approach cannot be successful in isolation, but must be accompanied by other measures. In the case of climate change, these must involve modifying the way we live our lives, both as individuals and collectively. Similarly, our response to an asteroid impact or a super-eruption that we are unable to prevent is likely to entail drastic changes in the way our society currently operates, almost certainly involving changed priorities and a greater restriction on personal freedoms as we seek to recover and rebuild.
Surviving Armageddon, Bill McGuire
No comments:
Post a Comment